МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский государственный гуманитарный университет» (ФГБОУ ВО «РГГУ»)

ИНСТИТУТ ИНФОРМАЦИОННЫХ НАУК И ТЕХНОЛОГИЙ БЕЗОПАСНОСТИ Факультет информационных систем и безопасности Кафедра фундаментальной и прикладной математики

ТЕОРИЯ КОДИРОВАНИЯ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

01.03.04 Прикладная математика

Код и наименование направления подготовки/специальности

Математика информационных сред

Наименование направленности (профиля)/ специализации

Уровень высшего образования: Бакалавриат

Форма обучения: очная

РПД адаптирована для лиц с ограниченными возможностями здоровья и инвалидов

ТЕОРИЯ КОДИРОВАНИЯ

Рабочая программа дисциплины

Составители:

доктор физико-математических наук, профессор В.М. Максимов

УТВЕРЖДЕНО

ОГЛАВЛЕНИЕ

Рабочая программа дисциплины	2
1. Пояснительная записка	
1.1. Цель и задачи дисциплины	4
1.2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с	
индикаторами достижения компетенций	4
1.3. Место дисциплины в структуре образовательной программы	4
2. Структура дисциплины	4
3. Содержание дисциплины	5
4. Образовательные технологии	6
5. Оценка планируемых результатов обучения	6
5.1 Система оценивания	6
5.2 Критерии выставления оценки по дисциплине	6
5.3 Оценочные средства (материалы) для текущего контроля успеваемости,	
промежуточной аттестации обучающихся по дисциплине	7
6. Учебно-методическое и информационное обеспечение дисциплины	9
6.1 Список источников и литературы	9
6.2 Перечень ресурсов информационно-телекоммуникационной сети «Интернет»	10
6.3 Профессиональные базы данных и информационно-справочные системы	10
7. Материально-техническое обеспечение дисциплины	10
8. Обеспечение образовательного процесса для лиц с ограниченными возможностями	
здоровья и инвалидов	10
9. Методические материалы	11
9.1 Планы практических занятий	11
9.2 Методические рекомендации по подготовке письменных работ	13
Приложение 1. Аннотания рабоней программы лисниплины	14

1. Пояснительная записка

1.1. Цель и задачи дисциплины

Цель дисциплины: изучение класса p-адическозначных функций, специальных классам Т-функций, понятие о непрерывности и дифференцируемости, разложение в ряды и на этой основе изучение свойств криптокритериев.

Задачи дисциплины: ознакомление с различными направлениями и методологией анализа радических функций, активно развивающегося направления математики; обучение студентов теории и практике применения методов этого анализа к математическим объектам и возможных приложений в различных областях экономики и управления, психологии, физики и др.

1.2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Коды компе-тенций	Содержание компетенций	Перечень планируемых результатов обучения по дисциплине
ПК-2. Способен выделять, формулировать возникающие в результате самостоятельной научной деятельности или деятельности научных, производственных, административных учреждений задачи или подзадачи для решения текущих проблем	ПК-2.1. Владеет навыками работы с информационными системами	Знать: основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования; Уметь: использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования; Владеть: дисциплинами естественных наук в профессиональной деятельности, применять методы математического и анализа, и моделирования, теоретического и экспериментального исследования.

1.3. Место дисциплины в структуре образовательной программы

Дисциплина «Теория кодирования» относится к части, формируемой участниками образовательных отношений блока дисциплин учебного плана.

Для освоения дисциплины необходимы знания, умения и владения, сформированные в ходе изучения следующих дисциплин: Общая алгебра и теория чисел.

В результате освоения дисциплины формируются знания, умения и владения, необходимые для прохождения практик: Производственная практика (Проектно-технологическая практика), Производственная практика (Научно-исследовательская работа).

2. Структура дисциплины

Общая трудоёмкость дисциплины составляет 4 з.е., 144 академических часа.

Структура дисциплины для очной формы обучения

Объем дисциплины в форме <u>контактной работы</u> обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Семестр	Тип учебных занятий	Количество
		часов
8	Лекции	18
8	Практические занятия	20
	Bcero:	38

Объем дисциплины (модуля) в форме <u>самостоятельной работы обучающихся</u> составляет 106 акалемических часов.

3. Содержание дисциплины

Тема 1. Конечные поля, их построение и основные свойства. Конечные поля, их построение и основные свойства. Поле Галуа.

Тема 2. Математические аспекты проблем передачи информации, вопрос о построения и кодов, исправляющих ошибки. Процедуры кодирования и декодирования. Теорема Шеннона о существовании хороших кодов.

Математические аспекты проблем передачи информации, вопрос о построения кодов, исправляющих ошибки. Процедуры кодирования и декодирования. Теорема Шеннона о существовании хороших кодов.

Тема 3. Линейные коды и их параметры. Спектры и двойственность. Двоичные коды Хэмминга.

Линейные коды и их параметры: Линейные коды. Кодирование и декодирование. линейных кодов. Общие свойства Спектры и двойственность. Двоичные коды Хэмминга Теорема о связи проверочной и порождающей матриц. Теорема Глаголева. Границы объема кода: граница Синглтона, граница Хэмминга, граница аршамова-Гилберта, граница Плоткина.

Тема 4. Коды Рида-Соломона. БЧХ-коды и рациональные коды Гоппы

Коды Рида-Соломона. БЧХ-коды и рациональные коды Гоппы. Циклические коды. Кольцо многочленов над полем Галуа. Определение циклического кода. Теорема о необходимом и достаточном условии существования циклического кода с порождающим многочленом g(x). Кодирование и декодирование циклических кодов. Примеры циклических кодов: коды Хэмминга, коды Боуза-Чоудхури-Хоквингема (БЧХ-коды), коды Рида-Соломона, коды Юстесена, коды Гоппы.

Тема 5. Циклические и квадратично-вычетные коды. Конструкции новых кодов из уже известных.

Циклические и квадратично-вычетные коды. Конструкции новых кодов из уже известных. Теорема о существовании совершенных кодов. Коды Хемминга над GF(q), способы задания, кодирование, декодирование, единственность. Коды Васильева. Оценки числа совершенных кодов. Коды Рида-Маллера.

Тема 6. Асимптотически длинные коды, границы для их параметров. Асимптотически длинные коды, границы для их параметров.

Тема 7. Построение асимптотически хороших кодов. Открытые проблемы.

Построение асимптотически хороших кодов. Открытые проблемы. Разделимые и префиксные коды. Стоимость кодирования. Неравенство Крафта-Макмиллана. Оптимальное кодирование. Метод Хаффмена. Метод Фано. Энтропия. Метод Шеннона для бернуллиевских источников. Теорема Шеннона для бернуллиевских источников. Критерий разделимости побуквенного кодирования. Теоремы Маркова. Алгоритм распознавания разделимости. Универсальное кодирование, теорема Фитингофа.

4. Образовательные технологии

Для проведения занятий лекционного типа по дисциплине применяются такие образовательные технологии как лекция-визуализация с применением слайд-проектора, проблемная лекция.

Для проведения *практических занятий* используются такие образовательные технологии как: решение типовых задач для закрепления и формирования знаний, умений, навыков.

В рамках самостоятельной работы студентов проводится консультирование и проверка домашних заданий посредством электронной почты.

В период временного приостановления посещения обучающимися помещений и территории РГГУ для организации учебного процесса с применением электронного обучения и дистанционных образовательных технологий могут быть использованы следующие образовательные технологии:

- видео-лекции;
- онлайн-лекции в режиме реального времени;
- электронные учебные, учебные пособия, научные издания в электронном виде и доступ к иным электронным образовательным ресурсам;
 - системы для электронного тестирования;
 - консультации с использованием телекоммуникационных средств.

5. Оценка планируемых результатов обучения

5.1 Система оценивания

Форма контроля	Макс. количество баллов	
	За одну работу	Всего
Текущий контроль:		
Опрос	5 баллов	20 баллов
Доклады, рефераты	5 баллов	15 баллов
Контрольная работа	25 баллов	25 баллов
Промежуточная аттестация - экзамен (Экзамен по билетам)		40 баллов
Итого за семестр		100 баллов

Полученный совокупный результат конвертируется в традиционную шкалу оценок и в шкалу оценок Европейской системы переноса и накопления кредитов (European Credit Transfer System; далее – ECTS) в соответствии с таблицей:

100-балльная шкала	Традиционная шкала		Шкала ECTS
95 – 100	Отлично		A
83 – 94	Отлично	зачтено	В
68 - 82	Хорошо		C
56 – 67	Vyopuorpopurouvuo		D
50 – 55	Удовлетворительно		Е
20 – 49	Неудовлетворительно	не зачтено	FX
0 – 19			F

5.2 Критерии выставления оценки по дисциплине

Баллы/	Оценка по	Критерии оценки результатов обучения по дисциплине
Шкала ECTS	дисциплине	
100-83/ A,B	отлично	Выставляется обучающемуся, если он глубоко и прочно усвоил теоретический и практический материал, может продемонстрировать это на занятиях и в ходе промежуточной аттестации. Обучающийся исчерпывающе и логически стройно излагает учебный материал, умеет увязывать теорию с практикой, справляется с решением задач профессиональной направленности высокого уровня сложности, правильно обосновывает принятые решения. Свободно ориентируется в учебной и профессиональной литературе. Оценка по дисциплине выставляются обучающемуся с учётом результатов текущей и промежуточной аттестации. Компетенции, закреплённые за дисциплиной, сформированы на уровне — «высокий».
82-68/ C	хорошо	Выставляется обучающемуся, если он знает теоретический и практический материал, грамотно и по существу излагает его на занятиях и в ходе промежуточной аттестации, не допуская существенных неточностей. Обучающийся правильно применяет теоретические положения при решении практических задач профессиональной направленности разного уровня сложности, владеет необходимыми для этого навыками и приёмами. Достаточно хорошо ориентируется в учебной и профессиональной литературе. Оценка по дисциплине выставляются обучающемуся с учётом результатов текущей и промежуточной аттестации. Компетенции, закреплённые за дисциплиной, сформированы на уровне — «хороший».
67-50/ D,E	удовлетво- рительно	Выставляется обучающемуся, если он знает на базовом уровне теоретический и практический материал, допускает отдельные ошибки при его изложении на занятиях и в ходе промежуточной аттестации. Обучающийся испытывает определённые затруднения в применении теоретических положений при решении практических задач профессиональной направленности стандартного уровня сложности, владеет необходимыми для этого базовыми навыками и приёмами. Демонстрирует достаточный уровень знания учебной литературы по дисциплине. Оценка по дисциплине выставляются обучающемуся с учётом результатов текущей и промежуточной аттестации. Компетенции, закреплённые за дисциплиной, сформированы на уровне — «достаточный».
49-0/ F,FX	неудовлет- ворительно	Выставляется обучающемуся, если он не знает на базовом уровне теоретический и практический материал, допускает грубые ошибки при его изложении на занятиях и в ходе промежуточной аттестации. Обучающийся испытывает серьёзные затруднения в применении теоретических положений при решении практических задач профессиональной направленности стандартного уровня сложности, не владеет необходимыми для этого навыками и приёмами. Демонстрирует фрагментарные знания учебной литературы по дисциплине. Оценка по дисциплине выставляются обучающемуся с учётом результатов текущей и промежуточной аттестации. Компетенции на уровне «достаточный», закреплённые за дисциплиной, не сформированы.

5.3 Оценочные средства (материалы) для текущего контроля успеваемости, промежуточной аттестации обучающихся по дисциплине

Текущий контроль

Примерная тематика рефератов, докладов:

1. Задача о назначениях: постановка, анализ и решение задачи с точки зрения: теории графов, методов оптимальных решений, теории кодирования.

- 2. Теория групп как необходимый аппарат в теории кодирования. Базовые представления, группы подстановок.
- 3. Сходство и различие кодов Хемминга и кодов Рида-Соломона.
- 4. Вклад Шеннона в развитие теории информации.
- 5. Математические исследования в теории информации.

Примерные теоретические вопросы для контрольной работы:

- 1. Геометрические свойства кодов, исправляющих ошибки, и другие подобного типа проблемы.
- 2. Построение сверхстойких кодов.
- 3. Перечислить параметры линейных кодов.
- 4. Указать границы для параметров асимптотически длинных кодов.
- 5. Указать процедуры кодирования и декодирования.
- 6. Привести пример кода, исправляющего ошибки.

Примерные задания для контрольной работы:

Вариант 1.

1. Построить коды с помощью проверочных матриц.

$$\mathbf{H} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 \end{pmatrix}$$

- 2. Пусть в канале связи используется код Хемминга длины 7, столбцы проверочной матрицы которого лексикографически упорядочены. Пусть на приемном конце получено слово (0 1 1 0 1 1 0). Декодировать его и найти информационный блок.
- 3. Для линейного кода, заданного порождающей матрицей $H = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$

построить таблицу стандартного расположения. Декодировать слово

- (1 1 0 1 1 1) по таблице стандартного расположения и слово (1 0 1 0 1 1) с помощью синдрома.
- 4. Построить таблицу синдромов для расширенного кода Хемминга длины 8.

Вариант 2.

- 1. Построить коды Фано и Хаффмена найти стоимости кодирований для источников Бернулли с вероятностями букв:
- a) $P = \{0.5; 0.2; 0.1; 0.09; 0.08; 0.03\},\$
- б) $P = \{0.4; 0.2; 0.1; 0.1; 0.1; 0.1\},\$
- B) $P = \{0.4, 0.3, 0.1, 0.07, 0.06, 0.04, 0.03\}.$
- 2. Для заданного q указать набор вероятностей P, при котором существует qзначный префиксный код с заданным набором длин кодовых слов L, являющийся оптимальным. Построить этот код.
- a) q = 2, $L = \{1, 2, 4, 4, 5, 5\}$,
- б) $q = 2, L = \{2, 2, 2, 3, 3\}.$
- 3. Построить код Шеннона для источников Бернулли с вероятностями букв:
- a) $P = \{0.6; 0.1; 0.09; 0.08; 0.07; 0.06\},\$

- б) $P = \{0.4; 0.4; 0.1; 0.03; 0.03; 0.2; 0.2\},\$
- B) $P = \{0.34; 0.18; 0.17; 0.16; 0.15\}.$

Найти стоимости кодирований.

- 4. Пусть дан монотонный источник $A = \{a, b, c, d\}$. Передать слово w с помощью кода «стопка книг». Декодировать полученное слово.
- a) w = cbbacccdbb;
- δ) w = *ccabbaaccc*.
- 5. Найти код сообщения w с помощью метода Лемпела Зива LZ78
- a) w = babaababaaaabab;
- δ) w = aaababaabaaabab.

Промежуточная аттестация (экзамен)

Контрольные вопросы по курсу:

- 1. Конечные поля, их построение и основные свойства
- 2. Математические аспекты проблем передачи информации, вопрос о построения и кодов, исправляющих ошибки.
- 3. Процедуры кодирования и декодирования.
- 4. Теорема Шеннона о существовании хороших кодов
- 5. Линейные коды и их параметры.
- 6. Спектры и двойственность. Двоичные коды Хэмминга.
- 7. Коды Рида-Соломона.
- 8. БЧХ-коды и рациональные коды Гоппы
- 9. Циклические и квадратично-вычетные коды.
- 10. Конструкции новых кодов из уже известных.
- 11. Асимптотически длинные коды, границы для их параметров.
- 12. Построение асимптотически хороших кодов.
- 13. Открытые проблемы.

6. Учебно-методическое и информационное обеспечение дисциплины

6.1 Список источников и литературы

Литература

Основная

- 1. Гашков С.Б. Криптографические методы защиты информации: учеб. пособие для студентов вузов/С.Б. Гашков, Э. А. Применко, М. А. Черепнев. М.: Академия, 2010. 297 с.
- 2. Применко Э. А. Алгебраические основы криптографии: учеб. пособие для студентов вузов, обучающихся по направлениям ВПО 010400 "Прикладная математика и информатика" и 010300 "Фундаментальная информатика и информ. технологии" / Э. А. Применко. М.: URSS: Либроком, 2013. 283 с. (Основы защиты информации).
- 3. Введение в криптографию / [В. В. Ященко и др.]; под ред. В. В. Ященко. Изд. 4-е, доп. М.: МЦНМО, 2012. 347 с.

Дополнительная

1.Шептунов М.В. Дискретная математика для бакалавриата: учебное пособие для использования в учебном процессе образовательных организаций, реализующих программы высшего образования по направлениям подготовки 10.03.01 - "Информационная безопасность" 09.03.03 - "Прикладная информатика", 38.03.05 - "Бизнес-информатика" (уровень бакалавриата) / М. В. Шептунов. - Москва: Горячая линия-Телеком, 2017. - 114 с.

6.2 Перечень ресурсов информационно-телекоммуникационной сети «Интернет».

- 1.Интернет- библиотека: http://ilib.mccme.ru
- 2. Прикладная математика. Справочник математических формул: http://www.pm298.ru

Национальная электронная библиотека (НЭБ) www.rusneb.ru ELibrary.ru Научная электронная библиотека www.elibrary.ru

6.3 Профессиональные базы данных и информационно-справочные системы

Доступ к профессиональным базам данных: https://liber.rsuh.ru/ru/bases

Информационные справочные системы:

- 1. Консультант Плюс
- 2. Гарант

7. Материально-техническое обеспечение дисциплины

Для обеспечения дисциплины используется материально-техническая база образовательного учреждения: учебные аудитории, оснащённые доской, компьютером или ноутбуком, проектором (стационарным или переносным) для демонстрации учебных материалов.

Состав программного обеспечения:

- 1. Windows
- 2. Microsoft Office
- 3. Kaspersky Endpoint Security

8. Обеспечение образовательного процесса для лиц с ограниченными возможностями здоровья и инвалидов

В ходе реализации дисциплины используются следующие дополнительные методы обучения, текущего контроля успеваемости и промежуточной аттестации обучающихся в зависимости от их индивидуальных особенностей:

- для слепых и слабовидящих: лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением; письменные задания выполняются на компьютере со специализированным программным обеспечением или могут быть заменены устным ответом; обеспечивается индивидуальное равномерное освещение не менее 300 люкс; для выполнения задания при необходимости предоставляется увеличивающее устройство; возможно также использование собственных увеличивающих устройств; письменные задания оформляются увеличенным шрифтом; экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.
- для глухих и слабослышащих: лекции оформляются в виде электронного документа, либо предоставляется звукоусиливающая аппаратура индивидуального пользования; письменные задания выполняются на компьютере в письменной форме; экзамен и зачёт проводятся в письменной форме на компьютере; возможно проведение в форме тестирования.
- для лиц с нарушениями опорно-двигательного аппарата: лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением; письменные задания выполняются на компьютере со

специализированным программным обеспечением; экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.

При необходимости предусматривается увеличение времени для подготовки ответа.

Процедура проведения промежуточной аттестации для обучающихся устанавливается с учётом их индивидуальных психофизических особенностей. Промежуточная аттестация может проводиться в несколько этапов.

При проведении процедуры оценивания результатов обучения предусматривается использование технических средств, необходимых в связи с индивидуальными особенностями обучающихся. Эти средства могут быть предоставлены университетом, или могут использоваться собственные технические средства.

Проведение процедуры оценивания результатов обучения допускается с использованием дистанционных образовательных технологий.

Обеспечивается доступ к информационным и библиографическим ресурсам в сети Интернет для каждого обучающегося в формах, адаптированных к ограничениям их здоровья и восприятия информации:

- для слепых и слабовидящих: в печатной форме увеличенным шрифтом, в форме электронного документа, в форме аудиофайла.
 - для глухих и слабослышащих: в печатной форме, в форме электронного документа.
- для обучающихся с нарушениями опорно-двигательного аппарата: в печатной форме, в форме электронного документа, в форме аудиофайла.

Учебные аудитории для всех видов контактной и самостоятельной работы, научная библиотека и иные помещения для обучения оснащены специальным оборудованием и учебными местами с техническими средствами обучения:

- для слепых и слабовидящих: устройством для сканирования и чтения с камерой SARA CE; дисплеем Брайля PAC Mate 20; принтером Брайля EmBraille ViewPlus;
- для глухих и слабослышащих: автоматизированным рабочим местом для людей с нарушением слуха и слабослышащих; акустический усилитель и колонки;
- для обучающихся с нарушениями опорно-двигательного аппарата: передвижными, регулируемыми эргономическими партами СИ-1; компьютерной техникой со специальным программным обеспечением.

9. Методические материалы

9.1 Планы практических занятий

Тема 1. Конечные поля, их построение и основные свойства.

Задания

Пример 2.3, гл. 2, упр.2.1,2.3, 3.7, пр. 7.1, 7.2, 7.3 из книги:

Применко Э. А. Алгебраические основы криптографии: учеб. пособие для студентов вузов, обучающихся по направлениям ВПО 010400 "Прикладная математика и информатика" и 010300 "Фундаментальная информатика и информ. технологии" / Э. А. Применко. - М.: URSS: Либроком, 2013. - 283 с. - (Основы защиты информации).

Указания по выполнению задания: вспомнить соответствующие вопросы из общей алгебры и теории чисел.

Тема 2. Математические аспекты проблем передачи информации.

Задания:

Пример 2.2, 2.4, 2.6 из книги:

Применко Э. А. Алгебраические основы криптографии: учеб. пособие для студентов вузов, обучающихся по направлениям ВПО 010400 "Прикладная математика и информатика" и 010300

"Фундаментальная информатика и информ. технологии" / Э. А. Применко. - М.: URSS: Либроком, 2013. - 283 с. - (Основы защиты информации).

Указания по выполнению задания: вспомнить соответствующие вопросы из общей алгебры и теории чисел, а также теории информации.

Тема 3. Линейные коды.

Задания:

Примеры 3.1, 3.2, пр.8.1 из книги:

Применко Э. А. Алгебраические основы криптографии: учеб. пособие для студентов вузов, обучающихся по направлениям ВПО 010400 "Прикладная математика и информатика" и 010300 "Фундаментальная информатика и информ. технологии" / Э. А. Применко. - М.: URSS: Либроком, 2013. - 283 с. - (Основы защиты информации).

Пример 4.4 из книги:

Шептунов М.В. Дискретная математика для бакалавриата: учебное пособие для использования в учебном процессе образовательных организаций, реализующих программы высшего образования по направлениям подготовки 10.03.01 - "Информационная безопасность" 09.03.03 - "Прикладная информатика", 38.03.05 - "Бизнес-информатика" (уровень бакалавриата) / М. В. Шептунов. - Москва: Горячая линия-Телеком, 2017. - 114 с.

Указания по выполнению задания: вспомнить соответствующие вопросы из общей алгебры и теории чисел, а также лекций.

Тема 4. Коды Рида-Соломона. БЧХ-коды и рациональные коды Гоппы.

Задания:

Задачи 4.2,4.3, 4.4 из книги:

Шептунов М.В. Дискретная математика для бакалавриата: учебное пособие для использования в учебном процессе образовательных организаций, реализующих программы высшего образования по направлениям подготовки 10.03.01 - "Информационная безопасность" 09.03.03 - "Прикладная информатика", 38.03.05 - "Бизнес-информатика" (уровень бакалавриата) / М. В. Шептунов. - Москва: Горячая линия-Телеком, 2017. - 114 с.

Указания по выполнению задания: вспомнить соответствующие вопросы из общей алгебры и теории чисел, а также лекций.

Тема 5. Циклические и квадратично-вычетные коды. Конструкции новых кодов из уже известных.

Задания:

Пример 4.2. из книги:

Шептунов М.В. Дискретная математика для бакалавриата: учебное пособие для использования в учебном процессе образовательных организаций, реализующих программы высшего образования по направлениям подготовки 10.03.01 - "Информационная безопасность" 09.03.03 - "Прикладная информатика", 38.03.05 - "Бизнес-информатика" (уровень бакалавриата) / М. В. Шептунов. - Москва: Горячая линия-Телеком, 2017. - 114 с.

Примеры 6.1, 6.2, 6.4 из книги:

Применко Э. А. Алгебраические основы криптографии: учеб. пособие для студентов вузов, обучающихся по направлениям ВПО 010400 "Прикладная математика и информатика" и 010300 "Фундаментальная информатика и информ. технологии" / Э. А. Применко. - М.: URSS: Либроком, 2013. - 283 с. - (Основы защиты информации).

Указания по выполнению задания: вспомнить соответствующие вопросы из общей алгебры и теории чисел, а также лекций.

Тема 6. Асимптотически длинные коды.

Задания:

Примеры 6.1, 6.4 из книги:

Применко Э. А. Алгебраические основы криптографии: учеб. пособие для студентов вузов, обучающихся по направлениям ВПО 010400 "Прикладная математика и информатика" и 010300 "Фундаментальная информатика и информ. технологии" / Э. А. Применко. - М.: URSS: Либроком, 2013. - 283 с. - (Основы защиты информации).

Указания по выполнению задания: вспомнить соответствующие вопросы из общей алгебры и теории чисел, а также лекций.

Тема 7. Построение асимптотически хороших кодов. Открытые проблемы.

Задания:

Примеры 4.2, 4.4 из книги:

Шептунов М.В. Дискретная математика для бакалавриата: учебное пособие для использования в учебном процессе образовательных организаций, реализующих программы высшего образования по направлениям подготовки 10.03.01 - "Информационная безопасность" 09.03.03 - "Прикладная информатика", 38.03.05 - "Бизнес-информатика" (уровень бакалавриата) / М. В. Шептунов. - Москва: Горячая линия-Телеком, 2017. - 114 с.

Указания по выполнению задания: вспомнить соответствующие вопросы из общей алгебры и теории чисел, а также лекций.

9.2 Методические рекомендации по подготовке письменных работ

Требования к подготовке и содержанию письменных работ (реферата, доклада):

- 1. Соответствие содержания теме и плану работы.
- 2. Полнота и глубина раскрытия основных понятий проблемы.
- 3. Достаточность фактов, позволяющих проиллюстрировать актуальность избранной проблемы, способы ее решения.
- 4. Работа с литературой, систематизация и структурирование материала.
- 5. Обобщение и сопоставление различных точек зрения по рассматриваемому вопросу.
- 6. Наличие и четкость выводов, резюме.

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

Дисциплина реализуется на факультете информационных систем и безопасности кафедрой фундаментальной и прикладной математики.

Цель дисциплины: изучение класса p-адическозначных функций, специальных классам Т-функций, понятие о непрерывности и дифференцируемости, разложение в ряды и на этой основе изучение свойств криптокритериев.

Задачи дисциплины: ознакомление с различными направлениями и методологией анализа радических функций, активно развивающегося направления математики; обучение студентов теории и практике применения методов этого анализа к математическим объектам и возможных приложений в различных областях экономики и управления, психологии, физики и др.

Дисциплина направлена на формирование следующих компетенций:

ПК-2. Способен выделять, формулировать возникающие в результате самостоятельной научной деятельности или деятельности научных, производственных, административных учреждений задачи или подзадачи для решения текущих проблем.

В результате освоения дисциплины обучающийся должен:

Знать: основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования;

Уметь: использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования;

Владеть: дисциплинами естественных наук в профессиональной деятельности, применять методы математического и анализа, и моделирования, теоретического и экспериментального исследования.

По дисциплине предусмотрена промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы.

ЛИСТ ИЗМЕНЕНИЙ¹

No	Текст актуализации или прилагаемый к РПД документ,	Дата	No
	содержащий изменения		протокола

 $^{^{\}rm 1}$ Для ОП ВО магистратуры изменения только за 2020 г.